Analytic function

In a complex plane where $f(z)$ is a function of complex variable z, $f^{\prime}(z)$ is defined in the same way as derivative of a real function $f^{\prime}(\mathbf{x})$ in a real plane, namely:

$$
f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}
$$

Definition:

A function $\mathbf{f}(\mathbf{z})$ is analytic (or holomorphic or regular or monogenic) in a region of the complex plane if it has a (unique) derivative at every point of the region.
[Note: when we say $f(z)$ is analytic at a point $z=a$, it means that $f(z)$ has a derivative at every point inside some small circle about $z=a]$.

Theorem I:

If $\mathrm{f}(\mathrm{z})=u(x, y)+i v(x, y)$ is analytic in a region, then in that region

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

\& $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$.
(These equations are called Cauchy - Riemann conditions).
Note: The student can prove these equations by using the followings:
 and \mathbf{y}.
(2) Since a complex function has a derivative w.r.t a real variable if and only of its real and imaginary parts do have derivatives.

$$
\begin{aligned}
& \therefore \frac{\partial f}{\partial z}=\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
& \& \frac{\partial f}{\partial z}=\frac{1}{i} \frac{\partial f}{\partial y}=\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \\
& \Rightarrow \frac{\partial f}{\partial z}=\left(\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}\right)
\end{aligned}
$$

(3) Since we assumed $\frac{\partial f}{\partial z}$ exists and is unique (this is what analytic function all about!!),
Thus $\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

\& $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$

Example: (Cauchy-Reimann conditions in polar coordinates)

In polar coordinates, prove that:

$$
\frac{\partial u}{\partial r}=\frac{\partial v}{r \partial \theta}
$$

\& $\frac{\partial v}{\partial r}=-\frac{\partial u}{r \partial \theta}$

Solution:

In Polar coordinates:
$\mathbf{f}(\mathbf{z})=\mathbf{u}(\mathbf{r}, \theta)+i \mathbf{v}(\mathbf{r}, \theta)$,
where $z=r e^{i \theta}$.
Applying the chain rule to get:

$$
\begin{equation*}
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial z} \frac{\partial z}{\partial r} \tag{3}
\end{equation*}
$$

Take the partial derivative of eq. (2) w.r.t the variable r to get

$$
\begin{equation*}
\frac{\partial z}{\partial r}=e^{i \theta} \tag{4}
\end{equation*}
$$

Substitute eq. (4) into eq (3) to get

$$
\begin{equation*}
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial z} e^{i \theta} \tag{5}
\end{equation*}
$$

Take the partial derivative of eq. (1) w.r.t the variable r to get

$$
\begin{equation*}
\frac{\partial f}{\partial r}=\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r} \tag{6}
\end{equation*}
$$

From eqs. (5) and (6) we have

$$
\begin{equation*}
\frac{\partial f}{\partial z} e^{i \theta}=\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r} . \tag{7}
\end{equation*}
$$

Again the chain rule gives us

$$
\begin{equation*}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta} . \tag{8}
\end{equation*}
$$

Take the partial derivative of eq. (2) w.r.t the variable θ to get

$$
\begin{equation*}
\frac{\partial z}{\partial \theta}=i r e^{i \theta} \tag{9}
\end{equation*}
$$

Substitute eq. (9) into eq. (8) to get

$$
\begin{equation*}
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial z} i^{i \theta} \tag{10}
\end{equation*}
$$

Take the partial derivative of eq. (1) w.r.t the variable θ to get

$$
\begin{equation*}
\frac{\partial f}{\partial \theta}=\frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta} . \tag{11}
\end{equation*}
$$

From eqs. (10) and (11) we have

$$
\begin{equation*}
\frac{\partial f}{\partial z} e^{i \theta}=\frac{1}{i r}\left(\frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}\right) . \tag{12}
\end{equation*}
$$

From eqs (7) and (12) we have

$$
\begin{equation*}
\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}=\frac{1}{i r}\left(\frac{\partial u}{\partial \theta}+i \frac{\partial v}{\partial \theta}\right) . \tag{13}
\end{equation*}
$$

By equating real and imaginary parts in both sides of eq (13) we get

$$
\frac{\partial u}{\partial r}=\frac{\partial v}{r \partial \theta} \quad \& \quad \frac{\partial v}{\partial r}=-\frac{\partial u}{r \partial \theta}
$$

(These are called Cauchy-Reimann conditions in polar coordinates).

Example: Show that the $f(\mathbf{z})=\mathrm{e}^{\mathbf{z}}$ is differentiable for all finite values of \mathbf{z}.

Solution:

$$
\begin{aligned}
& \mathbf{e}^{\mathrm{z}}=\mathrm{e}^{\mathrm{x}+i \mathrm{y}}=\mathrm{e}^{\mathrm{x}}(\cos \mathrm{y}+i \sin \mathrm{y}) \\
& \mathrm{u}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \quad \mathrm{v}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \\
& \text { To show that } f^{\prime}(\mathrm{z})=\mathrm{e}^{\mathrm{z}} \text { : }
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}=\mathbf{e}^{\mathrm{x}} \cos \mathrm{y} \quad, \quad \frac{\partial v}{\partial y}=\mathbf{e}^{\mathrm{x}} \cos \mathrm{y}
$$

$$
\text { Thus } \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}
$$

$$
\text { Also } \frac{\partial u}{\partial y}=-\mathbf{e}^{\mathbf{x}} \sin \mathbf{y} \quad, \quad \frac{\partial v}{\partial x}=\mathbf{e}^{\mathrm{x}} \sin \mathbf{y}
$$

$$
\text { Hence } \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

$$
\therefore \quad f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
$$

$$
\Rightarrow \quad f^{\prime}(z)=e^{x}(\cos y+i \sin y)
$$

Thus $f^{\prime}(z)=e^{x+i y}=e^{z}$
$\therefore f(\mathbf{z})=\mathrm{e}^{\mathbf{z}}$ is differentiable for all finite values of z . Exercise: Show that $f(z)=e^{i z}$ is also differentiable for all values of z.

Examples: Given the functions:
i) $|\mathrm{z}|=|\mathrm{x}+i \mathrm{y}|$.
ii) $f(\mathrm{z})=\mathrm{z}^{2}$.
iii) $\mathrm{z}^{*}=\mathrm{x}-i \mathrm{y}$
a) Find the real and imaginary parts of the given functions.
b) Is each of the given functions analytic? (Use the CauchRiemann conditions to check this).

Solutions:

i.a) $u=\sqrt{x^{2}+y^{2}} \quad$ and $\mathbf{v}=0$
i.b) $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y} \quad, \quad \frac{\partial v}{\partial x} \neq-\frac{\partial u}{\partial y}$
$\therefore|\mathrm{z}|$ is not analytic.
(The students must solve the other two examples).

