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Analytic function 
 

In a complex plane where f (z) is a function of complex variable z, 

f'(z) is defined in the same way as derivative of a real function f'(x) 

in a real plane, namely: 
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Definition:  

A function f (z) is analytic (or holomorphic or regular or monogenic) 

in a region of the complex plane if it has a (unique) derivative at 

every point of the region. 

[Note: when we say f (z) is analytic at a point z = a, it means that 

f (z) has a derivative at every point inside some small circle  

about z = a]. 

Theorem I: 

   If f (z) = u (x, y) + i v (x, y) is analytic in a region, then in 

 that region 
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 (These equations are called Cauchy – Riemann conditions). 

Note: The student can prove these equations by using the 

followings: 

(1) f has derivative w.r.t z     f has partial derivatives w.r.t. x 

 and y. 

(2) Since a complex function has a derivative w.r.t a real  

variable if and only of its real and imaginary parts do have  

derivatives. 
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(3) Since we assumed 
z
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 exists and is unique (this is what 

 analytic function all about!!),  
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Example: (Cauchy-Reimann conditions in polar coordinates) 

  In polar coordinates, prove that:  
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Solution: 

In Polar coordinates:  

f (z) = u(r, )+ i v(r, ),       (1) 

where z = r ei.        (2) 

Applying the chain rule to get: 
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Take the partial derivative of eq. (2) w.r.t the variable r to get 
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Substitute eq. (4) into eq (3) to get 
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.        (5) 

Take the partial derivative of eq. (1) w.r.t the variable r to get 
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From eqs. (5) and (6) we have 
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Again the chain rule gives us 
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Take the partial derivative of eq. (2) w.r.t the variable  to get 
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Substitute eq. (9) into eq. (8) to get 
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.        (10) 

Take the partial derivative of eq. (1) w.r.t the variable  to get 
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From eqs. (10) and (11) we have 
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From eqs (7) and (12) we have 
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By equating real and imaginary parts in both sides of eq (13) 

we get 
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  Q.E.D 

 (These are called Cauchy-Reimann conditions in polar 

 coordinates). 

 

Example:   ٍ Show that the f (z) = ez is differentiable for all finite 

values of z. 

Solution: 

  ez = ex+ iy = ex (cos y + i sin y) 

  u= ex cos y                       v=ex sin y  

 To show that f'(z) = ez: 
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   f (z) = ez  is differentiable for all finite values of z.  

Exercise: Show that f(z) = eiz is also differentiable for all values of  

z. 

Examples: Given the functions: 

i) z = x + i y . 

ii) f (z) = z2. 

iii) z*= x - i y 

a) Find the real and imaginary parts of the given functions. 

b) Is each of the given functions analytic? (Use the Cauch-

Riemann conditions to check this).    

Solutions:  

i.a) 22 yxu     and v= 0 

i.b) y
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  z  is not analytic.  

(The students must solve the other two examples).  

 

 


